

Welcome to Django Database Views’s documentation!

Contents:

	django-database-views
	Documentation

	Requirements

	Quickstart

	Features

	Running Tests

	Credits

	Installation

	Usage
	Deploying Your Single Page Application

	Models

	Cache Time to Live (TTL) Configuration

	Disabling Cache

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2017-03-10)

django-database-views

[image: _images/django-database-views.svg]
 [https://badge.fury.io/py/django-database-views][image: _images/django-database-views1.svg]
 [https://travis-ci.org/a7madnassar/django-database-views][image: _images/badge.svg]
 [https://coveralls.io/github/a7madnassar/django-database-views?branch=master]Serve your single page Javascript applications from Django.

Documentation

The full documentation is at https://django-database-views.readthedocs.io.

Requirements

	Django > 1.8

	A database engine such as MySQL

Quickstart

Install django-database-views using pip:

pip install django-database-views

Add it to your installed apps:

INSTALLED_APPS = (
 ...
 'database_views.apps.DatabaseViewsConfig',
 ...
)

Create a model to store versions for your index template in your app’s models.py:

from database_views.models import AbstractTemplate

class IndexTemplate(AbstractTemplate):

 class Meta:
 db_table = 'your_table_name' # For example 'index_template'.

Create a class-based view for your single page app in your app’s views.py and assign your model
to its model property:

from database_views.views import DatabaseTemplateView
from database_views.views import CachedTemplateResponse
from myapp.models import IndexTemplate

class IndexView(DatabaseTemplateView):
 app_name = 'main'
 model = IndexTemplate
 response_class = CachedTemplateResponse

Add a route for your index page view in your project’s urls.py file:

from myapp.views import IndexView

urlpatterns = [
 ...
 url(r'^$', IndexView.as_view())
 ...
]

That’s it!! Go to your new route and you should see your single page app’s index template served.
Please ensure that you configure the serving of your app’s static assets properly.

Features

	Easily serve your single page javascript applications from Django.

	Optionally cache your templates for a configurable amount of time.

	Works with ember-cli-deploy and more specifically with ember-cli-deploy-mysql [https://github.com/mwpastore/ember-cli-deploy-mysql].

Running Tests

To run tests use the following commands from the root of this project:

source <YOURVIRTUALENV>/bin/activate
(myenv) $ pip install -r requirements_test.txt
(myenv) $ py.test

Credits

Tools used in rendering this package:

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	cookiecutter-djangopackage [https://github.com/pydanny/cookiecutter-djangopackage]

Installation

At the command line:

$ easy_install django-database-views

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv django-database-views
$ pip install django-database-views

Usage

Deploying Your Single Page Application

You can publish a new template to your database in any way you choose. We assume that you will
use this to serve an Ember application, and the index template has been deployed
to the database. The easiest way to deploy it is to use
ember-cli-deploy-mysql [https://github.com/mwpastore/ember-cli-deploy-mysql].

If you are not using Ember you can still use this project to serve your application. You just
have to properly deploy your template to your MySQL database and set it as the current one. For
more details about the template model schema. see the Usage [https://django-database-views.readthedocs.io/en/latest/usage.html]
section.

Models

AbstractTemplate

The AbstractTemplate model represents a single template stored in the database. This model
creates a table in the database to hold all template-related information. This model has the
following fields defined:

	key: A unique identifier for the template.

	value: The template content.

	created_at: Creation date and time.

	gitsha: Reserved for future use.

	deployer: Reserved for future use.

This schema is based on the implementation of the django-cli-deploy-mysql [https://github.com/mwpastore/ember-cli-deploy-mysql] package. According to the deploy strategy implemented by
that package, a template version is activated by creating a record with the key current and the
key of the current version as its value. So for the current template to work properly your table
has to have two records in it. One for the template itself and another one for the current vesion
pointer.

AbstractApplicationTemplate

By default, this package is implemented to be compatible with Ember CLI deploy tools. However,
you can still use this package to implement a custom solution or change the way it works by default.

This model allows you to implement a model to store template for multiple applications.
This model extends the AbstractTemplate model and adds the following fields to it:

	app_name: The name of the application that owns this template.

	current: A boolean flag for the current version.

Cache Time to Live (TTL) Configuration

By default, if the CachedTemplateResponse class is used it will cache the contents of the
template for a week. To configure a different cache TTL for the template response, set the
TEMPLATE_CACHE_TTL setting in your settings module. For example:

TEMPLATE_CACHE_TTL = 24 * 60 * 60 # Cache template response for 24 hours.

Disabling Cache

It is recommended to cache template responses so the application doesn’t query the database every
time the template is served. If for any reason you need to disable the caching feature of the
template use the DatabaseTemplateResponse class instead as follows:

from database_views.views import DatabaseTemplateView
from database_views.response import DatabaseTemplateResponse
from myapp.models import IndexTemplate

class IndexView(DatabaseTemplateView):
 model = IndexTemplate
 response_class = DatabaseTemplateResponse

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/a7madnassar/django-database-views/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Django Database Views could always use more documentation, whether as part of the
official Django Database Views docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/a7madnassar/django-database-views/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-database-views for local development.

	Fork the django-database-views repo on GitHub.

	Clone your fork locally:

$ git clone https://github.com/a7madnassar/django-database-views.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-database-views
$ cd django-database-views/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 database_views tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, and 3.4, and for PyPy. Check
https://travis-ci.org/a7madnassar/django-database-views/pull_requests
and make sure that the tests pass for all supported Python versions.

Credits

Development Lead

	Ahmed Nassar <ektebli@yahoo.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2017-03-10)

	First release on PyPI.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Django Database Views’s documentation!

 		
 django-database-views

 		
 Documentation

 		
 Requirements

 		
 Quickstart

 		
 Features

 		
 Running Tests

 		
 Credits

 		
 Installation

 		
 Usage

 		
 Deploying Your Single Page Application

 		
 Models

 		
 Cache Time to Live (TTL) Configuration

 		
 Disabling Cache

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2017-03-10)

_static/up-pressed.png

_static/up.png

_static/plus.png

